知识图谱相关的名词解释

知识图谱(Knowledge Graph)是谷歌于2012年提出。企业通常出于商业目的去设计新的概念和名词。但每一个概念的提出都有其历史渊源和本质内涵。下面列举了知识图谱相关的几个概念,并简要阐明了它们与知识图谱的关系和区别。

  1. Knowledge Base:通常翻译为“知识库”。知识库是人工智能的经典概念之一。最早是作为专家系统(Expert System)的组成部分,用于支持推理。知识库中的知识有很多种不同的形式,例如本体知识、关联性知识、规则库、案例知识等。相比于知识库的概念,知识图谱更加侧重关联性知识的构建,如三元组。
  2. The Semantic Web :通常翻译为“语义网”或“语义互联网”,是Web之父Tim Berners Lee于1998年提出的【1】。语义互联网的核心内涵是:Web不仅仅要通过超链接把文本页面链接起来,还应该把事物链接起来,使得搜索引擎可以直接对事物进行搜索,而不仅仅是对网页进行搜索。谷歌知识图谱是语义互联网这一理念的商业化实现。也可以把语义互联网看做是一个基于互联网共同构建的全球知识库。
  3. Linked Data:通常翻译为“链接数据”。是Tim Berners Lee于2006年提出,是为了强调语义互联网的目的是要建立数据之间的链接,而非仅仅是把结构化的数据发布到网上。他为建立数据之间的链接制定了四个原则【2】。从理念上讲,链接数据最接近于知识图谱的概念。但很多商业知识图谱的具体实现并不一定完全遵循Tim所提出的那四个原则。
  4. Semantic Net/ Semantic Network:通常翻译为“语义网络”或“语义网”,这个翻译通常被与Semantic Web的翻译混淆起来,为了以示区别,这里采用“语义网络”的翻译。语义网络最早是1960年由认知科学家Allan M. Collins作为知识表示的一种方法提出【3】。WordNet是最典型的语义网络。相比起知识图谱,早期的语义网络更加侧重描述概念以及概念之间的关系,而知识图谱更加强调数据或事物之间的链接。
  5. Ontology:通常翻译为“本体”。本体本身是个哲学名词。在上个世纪80年代,人工智能研究人员将这一概念引入了计算机领域。Tom Gruber把本体定义为“概念和关系的形式化描述”【4】。通俗点讲,本体相似于数据库中的Schema,主要用来定义类和关系,以及类层次和关系层次等。OWL是最常用的本体描述语言。本体通常被用来为知识图谱定义Schema。

引文:

[1] Tim Berners Lee.  The Semantic Web Roadmap. https://www.w3.org/DesignIssues/Semantic.html, 1998.
[2]Tim Berners-Lee (2006-07-27). “Linked Data”Design IssuesW3C.
[3] Allan M. Collins; M. R. Quillian (1969). “Retrieval time from semantic memory”. Journal of verbal learning and verbal behavior8 (2): 240–247.
[4] Gruber, T. (1995). “Toward Principles for the Design of Ontologies Used for Knowledge Sharing”. International Journal of Human-Computer Studies43 (5-6): 907–928.

发表评论

电子邮件地址不会被公开。 必填项已用*标注